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ABSTRACT 
Computer scientists have made great strides in characterizing 
different measures of algorithmic fairness, and showing that certain 
measures of fairness cannot be jointly satisfied. In this paper, I 
argue that the three most popular families of measures – 
unconditional independence, target-conditional independence and 
classification-conditional independence – make assumptions that 
are unsustainable in the context of an unjust world. I begin by 
introducing the measures and the implicit idealizations they make 
about the underlying causal structure of the contexts in which they 
are deployed. I then discuss how these idealizations fall apart in the 
context of historical injustice, ongoing unmodeled oppression, and 
the permissibility of using sensitive attributes to rectify injustice. In 
the final section, I suggest an alternative framework for measuring 
fairness in the context of existing injustice: distributive fairness. 
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1 Introduction 
Developers of machine algorithms have started to grapple with the 
complex tradeoffs involved in detecting and eliminating bias in 
their creations. Some work has been done in computer science, 
statistics and criminology to generate measures of bias before, 
during or after deployment of an algorithm [7], Likewise, there has 
been work to show that biased algorithms may violate U.S. civil 
rights law because of their “disparate impact” upon minority groups 
[6]. Unfortunately, whilst computer scientists have made some 
strides in identifying appropriate measures of bias that operate in 
the abstract, there has been little engagement with the problem of 
diagnosing unfairness in the context of an already unjust world (c.f. 
[14]). 

In what follows, I suggest that historical and contemporary 
oppression on the basis of race, sex and other sensitive attributes 
means that the diagnosis of bias cannot be divorced from the 
context in which an algorithm is deployed. Measures of algorithmic 
bias assume that an algorithm which is fair in the abstract will be 
fair in the world. This is a fatal mistake. As the long history of 
discrimination, inequality and oppression teaches us, policies that 
are just in ideal circumstances often contribute to oppression if 
deployed in the context of existing injustice. Measures of 
algorithmic bias are no exception. 

2 Unfairness in Ideal Conditions 
Roughly put, given the attributes of an object or individual, i, a 
subset, {M}, of those attributes will be attended to by the 
algorithmic model as it generates a classification, C, for i that 
reflects the probability that i will possess some target property, T. 
These classifications can then be used, by themselves or in 
conjunction with other factors, to make decisions (e.g. “approve 
loan” or “do not approve loan”) which result in certain kinds of 
treatment (i.e. the disbursement of a loan, the serving of an 
advertisement, etc.). In this way, classification algorithms 
contribute, alongside many other factors, to the distribution of 
important benefits and burdens (e.g. loans, parole, medical care, 
etc.). 

In part because algorithms control the distribution of important 
goods, algorithmic developers take great pains to try to avoid 
making classifications on the basis of various sensitive attributes 
(e.g. race, gender, sexual orientation, etc.). The underlying 
philosophical justification for these efforts is rarely articulated [8], 
but they all implicitly assume that algorithmic bias is wrongful 
when and because sensitive attributes cause classifications. 
Abstracting away from the messy reality of existing injustice, the 
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computer science community has focused on measures and 
methods that assume that unfairness must flow through the 
algorithmic model and the classification. 

Indeed, we can construct a model of the ideal set of causal 
relationships (or lack thereof) between the algorithmic model, 
target property, classification and sensitive attributes. Causal 
graphical models [25,29] allow us to represent this ideal causal 
structure, as well as explore deviations from them. Consider an 
algorithmic model that considers a set, {M}, of features to 
determine a classification, C, which represents the probability that 
the subject being evaluated will possesses the target property, T. 
We can represent {M}, C, and T as a set of nodes in a graph. 
Likewise, we can represent causal relationships between these 
nodes with directed edges. Thus, in so far as the model feature set 
causes the classification, we represent this with a directed edge 
between nodes {M} and C. Moreover, since we hope that the 
algorithmic classifications are accurate, we also suppose that the 
model variables cause, are caused by, or share an unknown 
common cause with, the target property, T. All three of these causal 
structures can be represented by a causal graph. For simplicity sake, 
I assume that the model variables are causes of the target property 
(as represented in Fig 1). 

The next step is to introduce a sensitive attribute variable, A. 
Ideally, the sensitive attribute will have a causal connection to 
neither the model variables, the classification, nor the target 
property. This is a compelling liberal-egalitarian ideal, but as we 
shall see, it can break down in important ways. 

 

Figure 1: The ideal causal structure for algorithmic 
classification. A is the sensitive attribute, {M} a set of model 
features, C the classification score, and T the target property. 

The computer science community have mostly been concerned 
with one particular failure of this ideal structure: where the 
sensitive attribute is a cause of some model feature (i.e. as in Fig 2, 
where A à MA). Drawing on the legal theory of disparate impact, 
it is well recognized that seemingly benign model variables can 
skew classifications so that otherwise similar individuals of 
different races/genders receive wildly different scores [6]. Since 
sex, race and other sensitive attributes hold incredible sway over 
people’s lives, many model variables may be causally influenced 
by sensitive attributes. In order to avoid unintentionally allowing A 
to cause C, computer scientists have therefore generated a suite of 
different measures of bias to aid in the diagnosis and elimination of 
A’s causal influence over C. 

Although there are at least twenty different measures proposed 
in the literature [7,10], they can be roughly categorized into three 
classes: (i) measures of unconditional independence, (ii) measures 
of target-conditional independence, and (iii) measures of 
classification-conditional independence [5,14]. Each class of 
measure is defined by the particular statistical associations that it 

tests between C, T and A. I briefly review each category of measure 
and their implicit assumptions below.  

 

Figure 2: The standard deviation from the ideal. A causally 
influences some feature MA which influences C but not T. This 
manifests as a statistical association between A and C, via the 
model set {M} (but no association between A and T). 

2.1 Measures 
Measures of unconditional independence require that 
classifications are statistically independent from sensitive attributes 
(race, sex, etc.) – e.g. that the distribution of scores for a particular 
race is roughly equivalent to the distribution of scores for other 
races. Examples of such measures include “demographic parity” 
[18], “statistical parity” [13] and “anti-classification” [10]. A 
failure of these measures is intuitively troubling because it suggests 
that there is an open causal pathway between A and C – e.g. race is 
partially causing the algorithm’s predictions. Since, in ideal 
circumstances, it would be unfair for race (or other sensitive 
attributes) to influence our treatment of individuals, algorithms 
which fail to satisfy independence are also thought to be unfair. 

Note that measures of independence make a key assumption: 
that any causal influence A wields over C is illegitimate. While this 
may accord with liberal egalitarian ideal, as we shall see, it is 
morally dubious in the context of existing injustice and attempts to 
rectify it. 

Even letting this assumption stand, the technical literature is 
replete with papers that point out that measures of independence 
have unattractive features [12:8]. The most obvious of these is that 
independence is sensitive not only to bias introduced by the 
algorithm, but also to genuine differences in the distribution of the 
target property. For example, if the rate of malignancy in skin 
lesions is higher for women than men, then a perfectly accurate 
algorithm will classify women as higher risk for malignancy than 
men. Such an algorithm would fail to satisfy measures of 
independence, but only because it perfectly reflects the unequal 
distribution of malignancy in the actual world. This problem has 
motivated two kinds of conditional measures that seek to control 
for base rate differences. 

Measures of target-conditional independence require that, 
conditional upon the actual value of the target property (e.g. malign 
or benign), classification scores are statistically independent from 
sensitive attributes. Examples of such measures include “balance” 
[19], and “predictive equality”[11]. By measuring the 
independence of A and C conditional on T, we control for 
differences in the distribution of the target property between 
groups. The hope, therefore, is that we can control for any statistical 
association between A and C that is due to the algorithm capturing 
any causal association between A and T. Any residual statistical 

C 

T 

{M} A 

C 

T 

M1..N A 

MA 

{M} 



Measuring Fairness in an Unfair World AIES’20, February 7-8, 2020, New York, NY USA 
 

 

association is thought to be illegitimate, in part because it gives rise 
to different rates of Type I and II errors [17]. 

Likewise, measures of classification-conditional independence 
require that the target property is statistically independent of the 
sensitive attributes (race, sex, etc.), conditional upon their 
classification (e.g. positive or negative). Examples of such 
measures include “test-fairness” [9], and “calibration” [19]. 
Measures of classification-conditional independence eliminate 
base rate errors by controlling for differences in the distribution of 
scores between groups. The hope is that we can show that C is 
tightly calibrated with T, such that learning about A would not 
increase (or decrease) the probability of possessing the target 
property. In other words, all groups enjoy classifications of roughly 
the same degree of accuracy. 

Note that both kinds of conditional measures make two key 
assumptions.  

i. they assume that the causal influence of A over T is 
directed through the model variables, and hence also 
causes C.  

ii. they assume that whatever causal influence A wields over 
T is legitimate, and hence it is fair to allow A to have the 
same causal influence over C. 

As I argue below, in the context of an unjust world, neither 
assumption is sustainable. 

Importantly, these three kinds of measures cannot be satisfied 
simultaneously when the prevalence of the target property differs 
between groups [5,9,19]. Moreover, they each rely upon different 
normative justifications and background assumptions. In so far as 
we must choose a definition of fairness to apply, we ought to 
understand whether those background assumptions apply in the 
actual, unjust world where algorithms are deployed. 

3 Unfairness in Non-Ideal Conditions 
Much of the work done by statisticians and computer scientists to 
define these measures of bias has assumed that ideal, or relatively 
benign, causal structures operate in the background. But this 
assumption cannot be sustained. Building on prior work [14], I 
recount three ways in which existing injustice causes key 
assumptions of these measures of fairness fail: (a) historical 
injustice, (b) unmodelled injustice, and (c) the legitimacy of using 
sensitive attributes to rectify both kinds of injustice. 

3.1 Historical Injustice 
First, historical injustice means that we cannot assume that 
associations between A and T are legitimate. Recall that conditional 
measures, by controlling for S or T, implicitly assume that it is 
legitimate for A to cause S up to the degree that A causes T. A’s 
causal influence over T is therefore taken to be appropriate (or at 
best, a background condition outside the scope of study).  

In the absence of oppression, this may be a safe assumption: 
since we might hypothesize that any association between A and T 
is due to benign differences in group preferences or accidental 
regularities in behavior. In an unjust context though, these 
differences are anything but benign or accidental. Race has been a 
site of immense structural injustice, that has fundamentally 
constrained almost every black American’s life (the same, mutatis 

 
1 Recall that a pathway is open if every node is “on”, and a node is “on” if (i) it is not 
in the conditioning set and it is an initiator, a mediator, or a terminator, or (ii) it is in 
the conditioning set and is a collider. [29] 

mutandis, for women under patriarchy) [2]. In the context of 
historical injustice, we thus ought to be skeptical of claims that 
differences in the distribution of benefits and burdens between 
sexes or races are the result of “natural” differences in capacities or 
interests. Since historical injustice is likely responsible for race- 
and gender-based inequality, these inequalities are likely to be 
illegitimate [2,23:55–60].  

By assuming that fairness consists in measuring only that 
quantum of causal influence between A and C that is not due to the 
influence of A over T, these measures implicitly ask us to endorse 
the historical influence of A over T. In the context of injustice this 
amounts to endorsing (or assuming away) historical oppression.  

3.2 Unmodeled Injustice 
Second, the unjust circumstances in which we live can result in the 
sensitive attribute having causal influence over the target property 
in ways that do not affect any model variables (Fig. 3.). The most 
obvious example where this may be true is in the context of explicit 
racial bias. If explicitly racist police officers are more likely to 
arrest an individual simply because they are black, then this may 
not be fully captured by changes in any algorithmic model variable, 
since the method by which race causes arrest is direct. It might also 
occur in the context of implicit attitudes. If employees at Company 
A have implicit attitudes of disgust towards the disabled, then they 
may be less likely to collaborate with them, advocate for their work, 
or boost their morale. While the absence of these things might cause 
poor job performance at Company A, it may not cause changes in 
the model variables that are used to predict the job performance of 
applicants to Company A (i.e. education level, psychometric tests, 
number of prior jobs, etc.). 

 

Figure 3: An example of unmodelled injustice. Note that the 
causal influence of A over T is not captured by {M}. 

Note that if the influence of the sensitive attribute on the target is 
fully mediated by model variables (e.g. family postcode, history of 
drug use, education level) then this edge will disappear into an edge 
between A à {M}. But this happy case is rare. The model variables 
available to a classification algorithm are unlikely to fully capture 
all the different mechanisms of contemporary oppression. 

In such circumstances, the algorithm will fail to satisfy target 
conditional independence. This is because there is an “open” causal 
pathway between A and C (i.e. A à T ß {M} à C).1 The same is 
obviously true for measures of classification-conditional 
independence (since A and T are directly associated, A à T). It is 
not true, however, for measures of unconditional independence (i.e. 
T is a collider that “blocks” the open path A à T ß {M} à C). 
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Note, however, that the failure to satisfy conditional measures 
is not because the algorithm’s classification is caused by the 
sensitive attribute. Rather, any association between A and C is 
wholly induced by conditionalizing on the target property. In this 
respect, the existence of oppression in the societies where these 
algorithms are deployed mean conditionalized measures may 
simply be diagnosing existing bias that is uncaused and unaffected 
by the algorithm’s classification. 

Coupled with the problem of historical injustice, this makes it 
hard to defend the continued use of conditional measures of 
fairness. Consider that the only time conditional measures are 
sensitive to historical oppression in the distribution of a target 
property is when that oppression is not captured by model 
variables. If we can “capture” the existence of historical or ongoing 
oppression in the set of model variables, then it ceases to appear as 
unfair according to conditional measures. This inconsistency 
should be fatal to the use of conditional measures in the context of 
injustice. 

3.3 Rectification of Injustice 
Finally, this confluence of unjust circumstances sometimes makes 
it legitimate for sensitive attributes to cause classifications. The 
classic example is affirmative action policies that make hiring or 
admission decisions explicitly based on race in order to compensate 
for the historical disenfranchisement and exclusion of blacks from 
education and professional employment. Rectifying historical 
injustices, in so far as it involves the redistribution of resources, 
will necessarily require statistical associations between attributes 
and classifications. More subtly, in the context of injustice we 
might think unintended associations between sensitive attributes 
and classifications are legitimate if they prioritize aid to the most 
vulnerable. Consider a simple algorithm used to predict an elderly 
population’s need for health support services. It would be 
unsurprising to find an association between those scores and race. 
What matters here is the direction of the association (i.e. is it biased 
towards whites or blacks), and its effect on all things considered 
equality between races, genders and other sensitive attributes. 

This is important because it undermines the main assumption of 
measures of independence: that any causal association between A 
and C is illegitimate. While we might endorse this assumption in 
the context of ideal background conditions – where oppression on 
the basis of race and sex never occurred – it is indefensible in the 
context of historical injustice. 

4 Distributive Fairness 
If the idealizations required by the most popular measures of 
fairness do not hold in an unjust world, then how should we 
measure fairness in the context of existing injustice? In what 
follows, I propose a family of measures that seeks to capture a 
particular kind of fairness especially relevant in the context of 
historical injustice: “distributive fairness”. 

Distributive fairness is the idea that members of a just society 
ought to enjoy a fair share of the benefits and burdens produced by 
that society [20]. Like the measures of fairness popular in the 
machine learning literature, it captures the intuition that one’s race, 
gender, religious commitments, etc. should not determine how one 
is treated. But instead of focusing on how individuals are classified 
by the algorithm, it focuses on how the use of the algorithm changes 
the distribution of benefits and burdens in society more broadly. 

Thinking about fairness in this way allows us to draw on a rich 
philosophical literature on the nature of distributive justice. In 
particular, there is a deep debate over the kinds of benefits and 
burdens we ought to distribute equally. Some people have the 
intuition that, all other things being equal, we ought to minimize 
inequality of income, wealth, resources or wellbeing [30]. Others, 
skeptical that we can eliminate inequalities in wellbeing, want to 
eliminate inequalities in opportunities or luck [4,26]. Still others 
want to eliminate inequalities in our status or power as citizens [3]. 
This debate over the nature of distributive justice is an underutilized 
resource in the discussion over fair ML (c.f. [8,16]), and suggests a 
new family of measures under the broad classification of 
distributive fairness. 

Importantly, measures of distributive fairness will be 
structurally related to measures of unconditional independence. 
Since algorithmic classifications often distribute important benefits 
and burdens, associations between A and C may also contribute to 
inequalities in those outcomes. We can model this connection by 
simply extending our basic representations of algorithmic causal 
structures to include these outcomes, O. 

 

Figure 4: A complex causal association between a sensitive 
attribute, A and an outcome, O. Note that both classification, 
C, and target, property, T, mediate the causal influence of A 
over O 

Importantly, the kinds of outcomes relevant to justice often have 
complex causal relationships with the model variables and the 
target property (see Fig. 4). For instance, individual wealth is not 
only dependent on whether one’s loan is approved, but also whether 
or not one defaults on the loan (i.e. the target property). Likewise, 
one’s wealth can also be independently determined by some of the 
variables that the model uses to generate the classification (e.g. 
current income or employment history could influence one’s future 
wealth, regardless of the loan approval process, or whether or not 
one defaults). Or all three of the classification, model variables and 
target property may influence the outcome. 

The virtue of measures of distributive fairness is that they do not 
require careful screening of these causal structures. Precisely how 
an attribute is causally associated with a benefit or burden is 
irrelevant. Instead, what matters is that there is such an association, 
and that it results in a widening rather than a narrowing of 
inequality on the basis of the attribute. In place of complex causal 
analysis, there are two value judgements that must be made to 
generate a fully-formed measure of distributive fairness: (i) the 
currency of justice, and (ii) the demandingness of justice.  

4.1 Currency of Justice 
First, developers and policymakers must make a value-laden 
judgement about the particular outcome, O, that is relevant. As we 
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noted above, there is a long-standing philosophical literature about 
the appropriate “currency” of benefits and burdens that must be 
fairly distributed. In the simplest case, one might want to equalize 
the distribution of some pertinent primary resource (e.g. income, 
wealth) or all-things-considered wellbeing (e.g. health, preference 
satisfaction). But there are well established reasons – including the 
so-called “conversion” problem [27] – that one might be skeptical 
of pure egalitarianism with respect to material resources or 
wellbeing. One could, alternatively, focus on inequalities in 
opportunity: that the probability of realizing wellbeing should be 
dependent on a function of one’s talents and effort [16,26]. More 
radically, others have claimed that we owed individuals equality of 
luck: that their probability of realizing wellbeing should be 
independent of all those features outside of their control (including 
their “natural” talents) [4,15]. Others argue that neither luck nor 
opportunity for wellbeing are appropriate, and we should instead 
focus on inequalities in individuals capability to realize different 
ways of living a life [1,22,28]. Still others, argue for equality of 
citizenship: that we owe individuals those resources necessary to be 
“equal democratic citizens” in relation to others [3]. 

Importantly, almost all of these theories of justice are concerned 
with inequality in wide-scope outcomes (i.e. the distribution of 
wealth) rather than narrow-scope outcome (i.e. the allocation of 
credit) [21]. If the currency of justice is a broad social indicator – 
e.g. income, wealth, “primary goods”, wellbeing or capabilities – 
then it is the effect of the algorithm on those goods which is 
relevant. Moreover, these wide scope outcomes are the result of 
very complex social processes, which may weaken (or even 
reverse) the effect of an inequality in a narrow scope outcome. For 
instance, the effect of being denied a loan on your lifetime wealth 
is mediated by a host of factors – your prior wealth, your income, 
your family status, etc. – that may weaken or strengthen the effect 
of the denial of the loan. In this respect the influence of an 
algorithmic classification on the possession of a wide-scope 
outcome is complex in the extreme. As we noted above, however, 
the precise causal structure which results in these wide scope 
outcomes is, in general, not relevant to an evaluation of distributive 
fairness. What matters is that the pattern of distribution of the 
relevant wide-scope outcome – i.e. income – is fair.  

Of course, it will sometimes be the case that normative 
significance attaches to inequality in a narrow-scope outcome. For 
instance, if an algorithm which predicts which voters in a 
registration list are most likely to be ineligible is not carefully 
invigilated, it may create an inequality in a narrow scope outcome 
– i.e. expungement of a voter registration – which is unjust, 
regardless of its effect on other wide scope outcomes. But even 
when the currency of justice is more tightly defined – e.g. 
inequalities in voting rights – the causal influence of the 
classification on the outcome may be swamped by other causal 
factors.  

4.2 Demandingness 
Second, developers and policymakers face a value judgement about 
the demandingness of distributive fairness. To understand why, 
consider that distributive fairness is determined by analyzing the 
effect of the algorithm on the pre- and post-deployment distribution 
of the relevant outcome for different values of the sensitive 
attribute. To test this consideration, developers must engage in a 

 
2  For non-binary outcomes, which includes most outcomes of interest, more 
complicated expectations and comparisons must be made. I leave these extensions for 
later work. 

two-step analysis. In the first stage, they must identify the 
distribution of the outcome prior to the deployment of the 
algorithm. In the simple case where O is a binary outcome, this is 
captured by the difference in the conditional probability of realizing 
the outcome before deployment, OPRE, for different values of the 
sensitive attribute (i.e. D(OPRE) = Pr[OPRE|A=w] - Pr[OPRE|A=b]). 
In the second stage, they discern whether the deployment of the 
algorithm would widen or close any inequality that existed in the 
first stage (i.e. D(OPRE) - D(OPOST)).2 In this respect, measuring 
distributive fairness requires developers to estimate the degree of 
dependency between A and O both before and after the algorithm 
is deployed. 

Having established the effect of deployment, developers and 
policymakers face a value judgement about the demands of 
distributive fairness. Three views predominate. On the least 
demanding view, an algorithm is distributively unfair only if it 
increases inequality in the distribution of the relevant outcome. For 
instance, taking into account existing racial disparities in health, we 
might constrain a health services provision algorithm so that it does 
not widen those racial disparities [c.f. 24]. This account of the 
demandingness of distributive fairness is similar to current 
measures of fairness, which seek only to avoid creating new 
inequalities or dependencies. Accordingly, this view is vulnerable 
to the charge that it implicitly treats existing inequalities as 
legitimate and just. In this respect, while any algorithm that satisfies 
this constraint would avoid the problem of inadvertently widening 
or deepening inequality, it treats the status quo as morally 
legitimate in a way that is philosophically dubious. 

Alternatively, on the most demanding view, an algorithm is 
distributively unfair if it fails to minimize inequality in the 
distribution of the relevant outcome. For instance, taking into 
account existing racial disparities in health, we might tune a health 
services provision algorithm to maximize its impact in reducing 
those racial disparities. While this view is more philosophically 
defensible, it is also more likely to force developers and 
policymakers to make a tradeoff between accuracy and fairness. 
Consider that in some cases, owing to structural or data availability 
constraints, we might be able to increase the accuracy of health 
resource targeting for one group (i.e. men) but not other groups (i.e. 
women, non-binary persons, etc.). If we hold that fairness demands 
that we minimize gaps in health outcomes between groups, then we 
must forego improvements in the accuracy of the algorithm for the 
sake of fairness. This is known as the “levelling-down objection” 
to strict equality [30:247]. Given the intuitive power of this 
objection, more work is needed to assess the precise boundaries and 
justifiability of this tradeoff given different currencies of justice 
and deployment contexts. 

On a final view, an algorithm is distributively unfair if it fails to 
maximise the enjoyment of the relevant outcome for the worst-off 
group (and the next best-off group if there are multiple versions of 
the algorithm that would equally benefit the worst-off). For 
instance, taking into account existing racial disparities in health, we 
might tune a health services provision algorithm to maximize its 
impact in improving the health outcomes of the worst-off racial 
group. This view avoids the levelling-down objection, since it 
allows us to accept inequalities so long as we have done as well as 
we could for the least well-off. Nonetheless, while this kind of 



 

prioritarian principle has a long history and is intuitively attractive 
[26], it may be inappropriate for some kinds of currencies of justice. 
Consider that we should demand strict equality for certain kinds of 
outcomes – e.g. voting access. More work is therefore needed to 
assess the special cases where strict equality is demanded by the 
particular currency of justice. 

5 Conclusion 
In this paper I have cast doubt on the utility of standard measures 
of algorithmic fairness. I have argued that the idealization and 
assumptions which make these measures intuitively attractive in the 
abstract, fatally undermine their plausibility in the context of 
existing injustice. To remedy this problem, I suggest that we 
abandon accounts of fairness that rely upon diagnosing certain 
causal pathways between attributes and classifications. Instead, we 
ought to assess the fairness of algorithms according to their impact 
on overall distributive justice. By doing so our measures of 
algorithmic fairness will avoid committing to erroneous causal 
assumptions, be better able to deal with historical injustice, and 
more clearly specify the value judgements that underpin the choice 
of measure. 
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