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ABSTRACT 
Measures of algorithmic bias can be roughly classified into four 
categories, distinguished by the conditional probabilistic 
dependencies to which they are sensitive. First, measures of 
“procedural bias” diagnose bias when the score returned by an 
algorithm is probabilistically dependent on a sensitive class 
variable (e.g. race or sex). Second, measures of “outcome bias” 
capture probabilistic dependence between class variables and the 
outcome for each subject (e.g. parole granted or loan denied). 
Third, measures of “behavior-relative error bias” capture 
probabilistic dependence between class variables and the 
algorithmic score, conditional on target behaviors (e.g. recidivism 
or loan default). Fourth, measures of “score-relative error bias” 
capture probabilistic dependence between class variables and 
behavior, conditional on score.  Several recent discussions have 
demonstrated a tradeoff between these different measures of 
algorithmic bias, and at least one recent paper has suggested 
conditions under which tradeoffs may be minimized. 

In this paper we use the machinery of causal graphical models to 
show that, under standard assumptions, the underlying causal 
relations among variables forces some tradeoffs. We delineate a 
number of normative considerations that are encoded in different 
measures of bias, with reference to the philosophical literature on 
the wrongfulness of disparate treatment and disparate impact. 
While both kinds of error bias are nominally motivated by 
concern to avoid disparate impact, we argue that consideration of 
causal structures shows that these measures are better understood 
as complicated and unreliable measures of procedural biases (i.e. 
disparate treatment). Moreover, while procedural bias is indicative 
of disparate treatment, we show that the measure of procedural 
bias one ought to adopt is dependent on the account of the 

wrongfulness of disparate treatment one endorses. Finally, given 
that neither score-relative nor behavior-relative measures of error 
bias capture the relevant normative considerations, we suggest 
that error bias proper is best measured by score-based measures of 
accuracy, such as the Brier score. 
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1 INTRODUCTION 
Several recent papers [9,11,15,21,36] have argued that various 
measures of algorithmic bias impose contrary demands on 
algorithms employed to predict behavior.  Here we show how 
those results fall naturally out of simple considerations of 
underlying causal structure.  By attending to the causal structure, 
it is possible to sort measures of bias into four types.  Each type is 
motivated by distinct ethical considerations, and is sensitive to 
different features of the probability distribution over feature 
variables, variables recording target behaviors, and ‘sensitive’ 
variables recording membership in one or another social class.  
Attention to the underlying causal structure makes clear which 
constraints on unbiased distributions can and cannot be jointly 
satisfied, in general and under various relevant special conditions. 

We begin by considering the causal structures that make it 
possible to predict behavior from covariates, turn to a discussion 
of measures and their joint satisfiability, and close with some 
normative considerations. 
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1.1 Causal Structures 
There are a number of discussions of algorithmic bias in terms of 
causation now in the literature [20,22,23]. Here we use the 
machinery of causal modeling to explore the underlying 
structures to which distinct measures of bias are sensitive, classify 
measures with respect to those sensitivities, and note both limits 
to and tradeoffs among measures of various kinds. Algorithms 
predict behavior on the basis of observed values of variables that 
covary with the behavior to be predicted.  That covariation, if not 
due to accident (i.e. sampling error), arises from some underlying 
causal structure.  The machinery of causal graphical modeling 
permits representations of the possible causal structures, and 
allows rigorous inferences from them.  Here we employ the 
modeling conventions elaborated in Spirtes [33] (see also Pearl 
[27]).   

Consider an algorithm that takes as input a vector of model 
variables, and outputs a score representing the (epistemic) 
probability that the subject being evaluated will engage in some 
target behavior. For instance, a credit risk rating algorithm might 
take as input model variables whose values represent a subject’s 
gender, age, employment history, past loans, rental history, etc., 
and generate as output a score that predicts the chance that the 
subject will default on a loan, either quantitatively (e.g. as a 
probability or risk score) or qualitatively (e.g. by assignment to a 
‘high’ or ‘low’ risk group). Such prediction is possible only 
because the model variables are associated with the variable 
encoding the target behavior, and, if the association is not 
accidental, that in turn requires that the model variables be 
causally related to the target behavior.  Since model variables 
take their values before the target behavior occurs, this 
association requires either that: (i) the model variables cause the 
behavioral variable, or (ii) they share a common cause with the 
target behavior.  These two possible structures are represented in 
graphs 1a and1b, respectively, where for ease we employ a single 
model variable M, a single sensitive class variable C, a score 
variable S, a variable recording the (non)occurrence of the target 
behavior, B, and a variable O representing some relevant outcome 
caused by the decision into which the score enters as a 
consideration (e.g. whether a loan is offered).  Arrows in the 
graphs represent causal dependencies between variables, directed 
from the cause to the effect.  The variable U1 represents some 
unmeasured and unknown common cause.  By convention, the 
graphs are understood to be ‘causally complete’, i.e. there are no 
missing common causes of represented variables and all direct 
causal (and definitional) relations between variables are 
represented by arrows in the model. 

Hence, the graphs in Figs. 1a and 1b represent situations in 
which the class variable neither shares a common cause with, nor 
causally influences nor is causally influenced by any other 
variable in the graph.  That assumption is not always warranted, 
but when it holds, the class variable will be statistically associated 
with the score S and the target behavior B only by accident, i.e. as 
a result of non-representative sampling. When it fails, several 
possibilities present themselves. 

 

Figure 1: Causal Structures Permitting Prediction 

Consider, for the moment, the associations between C and S 
that are possible when M causes B directly. One causal structure 
which will generate such an association is that in Fig. 2a. In that 
graph, C causes S directly, as it will when C is itself among the 
feature variables employed by the model.  Alternatively, C might 
cause M, as in Fig. 2b.  A third possibility is that M causes C, as 
in Fig. 2c.  Finally, M might share a common cause with C, as in 
Fig. 2d.  For some sensitive variables, e.g. those encoding race or 
sex, it may be that this third possibility can be ignored, on the 
grounds that the feature in question is necessarily exogenous. But 
some class variables, e.g. disability status, clearly can be 
influenced by model variables.   

 

 

Figure 2: Causal Structures Inducing Associations Between C 
and S 
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Turning our attention to an association between C and B, it 
turns out that when the causal structure is as in Fig. 2a, C will not 
be associated with B, while when casual structure is as 
represented in Figs. 2b, 2c or 2d, C will be associated with B.  
But there are two other ways in which C can come to be 
associated with B: it may be that C is a direct cause of B, or that 
they share some common cause (U3), as in Figs. 3a and 3b 
respectively.  

 

 

Figure 3: Causal Structures Inducing an Association between 
Class and Behavior 

For the moment, we will assume that the class variable under 
consideration is exogenous, and hence we will give minimal 
further consideration to the possibilities represented by Fig. 2c, 
2d and 3b. 

Things are somewhat different if M is not a direct cause of B, 
but rather shares a common cause with it.  Of special concern is 
the graph, in Fig. 4a, in which the direct edge between M and B 
in 2d is replaced by a common cause U1.  In that case, C will be 
associated with S unconditionally, but not with B.  We now turn 
to an explanation of the associations we impute on the basis of the 
above graphs. 

 

 

Figure 4: Causal Structures of Special Interest 

Associations in observational data are not accidental only if 
they represent underlying probabilistic dependencies, and those 
probabilistic dependencies themselves hold in virtue of causal 
relations among the variables.  It is possible to read off from a 
causal graph which variables are probabilistically dependent and 
which independent of one another, given a possibly empty set of 

variables on which one is conditioning.  Doing so requires the use 
of the so-called D-separation Theorem, on the assumption that the 
Causal Markov and Faithfulness conditions hold (readers are 
referred to Spirtes [22] for detailed discussion the theorem and 
the axioms from which it follows).  Here we simply recount the 
rules of thumb by which one may read from a graph facts about 
which variables will and will not be probabilistically independent 
from one another [30].  Variables in a path (i.e. a sequence of 
variables connected by arrows) come in four varieties: 

(1) Terminal variables, with only one arrow in or out (C and 
B are terminal variables in the path CMB in Fig. 2b); 

(2) Mediators, which have one arrow in and one arrow out (M 
is a mediator on the path CMB in Fig. 2b); 

(3) Common causes, which have two arrows out (M is a 
common cause on the path CMB in Fig 2c); and  

(4) Colliders, which have two arrows in (S is a collider on the 
path CSMB in Fig 2a). 

Two variables connected by a path are associated provided that 
the path is ‘open’.  A path is open provided each variable in the 
path is ‘on’.  A variable is ‘on’ in a path, relative to a (possibly 
empty) conditioning set {V} of variables in the graph, provided it 
is a terminal variable, a mediator, or a common cause and not in 
the conditioning set, or is a collider and either is in the 
conditioning set or has some effect, direct or distal, which is in 
the conditioning set. If every variable in a path is on, the path is 
open and the two terminal variables are said to be d-connected on 
the conditioning set.  D-connected variables are probabilistically 
dependent, conditional on the variables in the conditioning set, 
and therefore (conditionally) associated in representative data.  
Variables that are not d-connected relative to a conditioning set 
are independent of one another, conditional on the variables in the 
conditioning set. 

Using the d-separation theorem, one can see that in Figs. 1a 
and 1b, C is independent of, and therefore in representative data 
will be statistically unassociated with S, any outcome O 
influenced by S, and the target behavior B.  There is no path, and 
thus no open path, between C and S, O or B.  Similarly, one can 
see that in every graph in Fig. 2, there is an open path between C 
and S: the path is direct, CS, in Fig 2a; in Fig 2b the path 
CMS includes only terminal variables and a mediator, and 
thus open when the conditioning set is empty; in Fig. 2c the path 
CMS includes only terminal variables and a common cause 
and so is also open given an empty conditioning set; and the path 
CUMS includes U as a common cause and M as a 
mediator, and so is, unconditionally, open.  In Figs. 3a and 3b, 
there is a direct path CB is open unconditionally in both 
graphs; consequently C and B will be associated in representative 
data given such causal structures. 

However, in Fig. 4a, there is only one path between C and B, 
CU2MU1B.  M is a collider in that path, and so relative 
to an empty conditioning set, C and B will be unassociated; put 
formally, C and B are probabilistically independent (C_||_B) in 
any probability density faithful to Fig. 4a, and in any 
representative data set they will be statistically unassociated on 
any measure of association. 
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2 MEASURES OF BIAS 
Measures of algorithmic bias can be classified by the 
(conditional) dependencies to which they are sensitive.  Our 
critical discussion presupposes that when the dependencies to 
which a measure is sensitive exist, the measure will report bias.1  
On that assumption, then, one broad set of measures diagnose 
bias when the score returned by an algorithm is probabilistically 
dependent on a class variable, like race or sex, either 
conditionally or unconditionally.  In the case that the measure is 
sensitive to an unconditional dependence between class and 
score, these measure effectively test for departures from the 
Independence condition, in the terminology of Barocas and Hardt 
[3].  Among the various measures which take this form are 
‘statistical parity’ [12] and ‘demographic parity’ [20]. Other 
measures in this class test for a conditional dependence between 
class and score, given the feature variables used by the algorithm  
(e.g. ‘conditional statistical parity’ as described by Corbett-
Davies et al. [11]). Whether sensitive to conditional or 
unconditional dependencies between class and score, these 
measures can be conceptualized as measures of procedural bias, 
in that they are sensitive to a particular feature of the procedure 
by which scores are produced.  In particular, they detect the direct 
causal or definitional influence of class (in the conditional case), 
or some proxy of class (in the unconditional case), on score. 

A second group of measures are sensitive to any conditional or 
unconditional dependence between sensitive class variables and 
the decisions or outcomes influenced by the algorithm’s output, 
e.g. whether or not a loan or parole is actually granted.  Among 
the various measures which take this form are the ‘80% rule’ 
[14,26] and the ‘Calders-Verwer gap’ [26], as well as some 
definitions of ‘statistical parity’ which measure outcome disparity 
rather than score disparity [11]. Other possible measures in this 
class might test for a conditional dependence between class and 
outcome, given the score assigned to an individual. Measures in 
this group can be understood as measures of outcome bias: they 
detect the causal influence of class on outcome, either through 
some effect on score (in the unconditional case), or by some other 
causal process (in the conditional case). 

A third group of measures are sensitive to the stability of the 
relationship between behavior and score when one conditions on 
class, e.g. measures of ‘balance’ [21], ‘disparate mistreatment’ 
[35], and ‘predictive equality’[11].  These measures judge there 
to be no bias if the probability of receiving a given score, given 
whether or not one engaged the behavior, is invariant among 
classes.  This is just to require that behavior render class 
unassociated with score; it is sometimes said of such situations 
that class is ‘screened off’ from score by behavior. Measures 
sensitive to this relationship test for ‘Separation’ in the 
terminology of Barocas and Hardt [3].  These measures are often 
motivated normatively by a concern to avoid scores that are 
differently reliable for different classes of persons.  As such, they 
might then intuitively be thought of as measures of error bias.  
                                                                 
1 In particular, we assume that the Causal Markov and Faithfulness conditions hold 
(c.f. Berk [5]). 

A fourth group of measures might also be motivated by a 
concern with differential reliability, and so comprehended in the 
error bias category, but differ from the third group by a subtle but 
important formal difference.  They also are sensitive to the 
stability of the relationship between score and behavior 
conditional on class, but focus on the reverse screening off 
relation.  Such measures – e.g. of calibration [9,21] or predictive 
parity [9] –  judge that no bias occurs when the probability of 
engaging in the target behavior given one’s score is invariant over 
different classes.  If this obtains, class is independent of behavior, 
conditional on score, i.e. class is screened of from behavior by 
score.  In the terminology of Barocas and Hardt [3], this condition 
is called ‘Sufficiency’. 

It is worth emphasizing the important difference between the 
two classes of measures of error bias.  The former class is 
sensitive to the independence of score and class, conditional on 

behavior (i.e. whether S⫫C|B) while the latter are sensitive to the 
independence of behavior and class, conditional on score (i.e. 

whether B⫫C|S).  We call the first group, including balance, 
misclassification, predictive equality, and false positive and false 
negative rates, behavior-relative measures of error bias and we 
call the second group, including calibration and predictive parity, 
score-relative measures of error bias.  Intuitively, it might be said 
that behavior-relative measures are appropriate when one is 
concerned to ensure that correct and incorrect predictions are 
similarly distributed in distinct classes, while score-relative 
measures are appropriate when one is concerned to insure that 
scores are as informative as possible, no matter what class is 
being considered.  That said, we do not endorse the intuitions or 
the measures, for reasons given below. 

2.1 Causal Structure and Performance 
Over the last three years a number of investigators have shown 
that various measures of bias cannot be driven to zero outside 
special conditions, and that particular measures of different kinds 
of bias are jointly incompatible, in that minimizing one requires 
that one not minimize others [9,11,15,21,36]. And a very few 
have offered particular measures or methods for constructing 
measures that are said to avoid such conflict [16,35].  Nearly all 
of this work proceeds with suppositions that restrict the particular 
statistical measures of association being employed.  Barocas and 
Hardt [3] is an exception; that discussion provides elegant general 
proofs that Independence, Separation and Sufficiency are 
pairwise inconsistent. As it turns out, once one realizes that the 
various measures of bias are simply different instruments for 
detecting specific probabilistic dependencies and independencies, 
these results fall out of simple consideration of the alternative 
causal structures.  Here we report a few such results, some novel 
and others merely sustaining conclusions reached elsewhere by 
others on the basis of quantitative rather than structural 
considerations.  As Barocas and Hardt [3] suggest, attending to 
the underlying causal structure yields insights into what can and 
cannot be achieved by way of algorithmic fairness, no matter the 
ingenuity of the design.  What is more, careful attention to 
underlying structure tells us something about when alternative 
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measures of bias are good or bad measures, depending on the 
kind of bias with which we are most concerned. 

A.  Measures, like statistical parity, that are sensitive to a 
probabilistic relationship between score and class are tests for 
procedural bias, in its widest sense. Procedural bias can be 
defined more or less restrictively.  On its most restrictive 
conception, procedural bias occurs only when the class variable is 
a model variable, directly influencing score (as in Fig. 2a).  On 
slightly less restrictive conceptions, procedural bias also includes 
cases in which the class variable causes some feature variable 
included in the model, but which is not itself in the model (as in 
Fig. 2b).  On the most comprehensive conception of procedural 
bias, all that is required is an association between class as 
measured by C and score S, and so procedural bias will 
comprehend cases in which a model variable causes class (Fig. 
2c) as well as cases in which class and some model variable share 
a common cause (Fig. 2d).  In each case, there is an open path 
between C and S, in virtue of which the two are unconditionally 
associated, and so measures like statistical parity will detect bias.  
Hence, if one is concerned only with procedural bias in a 
narrower sense, these are bad measures.  But if procedural bias is 
given its widest interpretation, they are perfectly good measures.  
Whether a wider or narrow understanding of procedural bias is 
appropriate as a test of disparate treatment, and so whether extant 
measures are cogent, depends entirely on the normative 
considerations at hand.  Those are quite likely to vary over 
contexts, for reasons we briefly report below. 

B.  Further, procedural bias, on both narrow and wide 
understandings, is a special case of outcome bias; that is, every 
case of procedural bias is also a case of outcome bias.  This result 
falls directly out of considerations of causal structure.  An 
unconditional association between class C and score S requires 
there be an open path between them, and in that path S must be a 
terminal variable with an edge directed into it.  By assumption, 
score influences outcome.  Extending the path between C and S 
by this edge yields a path between C and O which differs from 
that between C and S only in that S is now a mediator.  Since the 
path between C and S is unconditionally open, the path between 
C and O is unconditionally open, and C and O will be associated, 
i.e. outcome bias will occur in that outcomes will be differentially 
distributed over classes. 

C.  Behavior-relative measures of error bias, while normatively 
motivated by a concern to avoid differential rates of error 
between classes, are best understood as complex and unreliable 
measures of procedural bias.  Such measures are normatively 
motivated as follows: score and behavior must be associated, else 
algorithmic output is a complicated, predictively useless coin flip; 
but one might desire that this association be invariant among 
classes, so as to avoid a situation where some groups experience 
higher rates of being wrongly denied, or wrongly subjected to, the 
outcome in question. The required invariance holds only when S 
and C are independent given B.  Behavior-relative measures will, 
therefore, report bias when this conditional independence fails, 
i.e. when Separation does not hold. 

Three problems arise.  The first is made explicit by Barocas 
and Hardt [3] when they show that Independence and Separation 
are jointly incompatible.  Their simple and elegant derivation 
assumes that C and B are associated unconditionally.  For 
exogenous class variables, that is possible only if class causes 
behavior.  Under that condition, it is easy to see that ‘Separation’ 
must fail: conditioning on B will open the path CBMS, 
inducing an association between C and S, regardless of whether C 
causes S.  ‘Independence’ may yet be achieved, provided class 
does not cause any model variable, but ‘Separation’ is simply not 
a satisfiable condition.  Perforce, Independence cannot be jointly 
satisfied with either Separation or Sufficiency under these 
conditions. 

Second, conditioning on B will open the paths 
CU3BMS in graph 3b and CU3BU1MS in 
graph 4b, inducing an association between C and S when C and B 
share a common cause. Thus, behavior-relative measures will 
report bias either when class causes behavior or it shares a 
common cause with behavior, no matter what other causal 
relations may or may not exist between class and score (excepting 
degenerate cases where either score or class is perfectly predicted 
by behavior).   

Third, when C neither causes B nor shares a common cause 
with it, behavior-relative measures will report bias when, and 
only when, C causes S, directly or indirectly, or shares a common 
cause with some model variable, or is an effect of some model 
variable.  But, per point A above, this implies that behavior-
relative measures are simply detecting unconditional procedural 
bias. Moreover, they do so in ways that invite apparent false 
positive indications of procedural bias. Such false positive 
indications of procedural bias will arise whenever C causes B but 
is not causally connected to S by an unconditionally open path 
(c.f. Chouldechova [9] regarding disparate impact arising from 
failures of balance). The risk of false positives is eliminated if one 
simply attends instead to any unconditional association between 
score and class.  Hence, behavior-relative measures are fraught.  
In effect, they are introduced to detect morally relevant violations 
of Separation, but actually detect only morally relevant violations 
of Independence, and do even this unreliably. 

D.  Score-relative measures of error bias are normatively 
grounded in a concern to provide individuals with maximally 
informative predictions that do not take their class membership 
into account (i.e. the model variables are “sufficient” to 
accurately predict behavior [3]).  Of particular concern is that an 
algorithm subject to score-relative error bias may be less 
informative than it could be about one class, while being as 
informative as it could be about the latter. In that case, it would 
give some groups less than they deserve, namely optimal 
prediction given their vector of features.   Stipulating the cogency 
of the motivation, it turns out that these measures too are 
statistically problematic.  To avoid bias as so measured, an 
algorithm must be constructed so as to insure the independence of 
B from C, conditional on S (i.e. to ensure Sufficiency).  This is 
not possible if C causes M, or if M causes C, or if C and M share 
a common cause.  As these are exactly the structures that generate 
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wide sense procedural bias, score-relative measures turn out to be 
merely complicated measures of disparate treatment, just as with 
behavior-relative measures.  And again, should either class cause 
the target behavior, or class and behavior share some unmeasured 
common cause, special concerns arise.  When C causes B, C and 
B will be associated conditional on S, since conditioning on S 
does not close the path between C and B.  That is true even if C is 
not unconditionally associated with S, i.e. even when disparate 
treatment is not occurring in any sense.  So again, as measures of 
disparate treatment, score-relative measures of bias are subject to 
false positive reports that could be avoided by simply attending to 
the unconditional association between score and class. 

E.  Error bias of either kind can be avoided only in two ways.  
First, if C is causally isolated from the variables S, M and B, then 
C will be unassociated with any of them.  In that circumstance, 
and only in that circumstance, will the frequencies of B and S be 
non-accidentally invariant over classes.  As noted by 
Chouldechova [9] and Kleinberg [21], it is then possible, in fact, 
trivial, to ensure joint minimization of score- and behavior-
relative measures of bias: C is not d-connected to either S or B on 
any conditioning set, and so is independent of either variable 
conditional on the other.  Second, if one conditions on a terminal 
variable in a path, that closes the path.  Hence, score-relative 
measures of bias can be minimized by ensuring that score 
perfectly predicts class, because in that case to condition on S is 
in effect to condition on C.  And similarly, if it happens that 
behavior perfectly predicts class or score, behavior-relative 
measures of bias can be minimized because to condition on 
behavior is in effect to condition on class (or, respectively, score) 
(c.f. Kleinberg [21], who reach much the same result 
quantitatively).  Note that perfect prediction of C by S requires 
the existence of disparate treatment in the wide sense.  Thus, 
score-relative error bias and procedural bias cannot be jointly 
eliminated, i.e. per Barocas and Hardt, Independence and 
Sufficiency cannot be jointly satisfied. 

F.  Sensitive social classes are sensitive in part exactly because 
they are, or are thought to be, causally implicated in generating 
behaviors of interest, if only because class conditions society’s 
response to subjects.  For example, race is almost certainly a 
cause not of criminal behavior but of re-arrest, i.e. recidivism-as-
measured, if only because police are more likely to arrest 
African-Americans than members of other racial categories in 
otherwise similar circumstances.  Hence, we should expect that 
causal connections between class and behavior will be ubiquitous, 
and error biases of both kinds unavoidable.  We suggest this 
ought to occasion a rethinking of the value of all condition-
relative measures of error bias. 

3 WHICH BIASES MATTER? 
Algorithms serve multiple purposes, and hence are subject to 
multiple desiderata.  One desideratum is that they be as 
predictively accurate as possible. That requirement is justified 
broadly by considerations of welfare: the greater the predictive 
competence of an algorithm, the more efficient the distribution of 
resources its output informs. 

Alongside overall predictive accuracy, we might also care 
about the fairness of the decisions made by the algorithm. But 
“fairness” is an essentially contested concept, with a wide range 
of competing elaborations. In broad terms, we suggest that 
conceptions of fairness relevant to algorithmic decision-making 
can be classified in one of three ways, as either: (i) disparate 
treatment, (ii) disparate impact or (iii) differential distribution of 
error. In what follows, we discuss the normative considerations 
that may lead one to care about each form of discrimination, the 
measures which are apposite to each form of discrimination, and 
the potential for tradeoffs between such measures. 

3.1 Disparate Treatment and Procedure Bias 
Paradigmatically, disparate treatment involves an intention to 
disadvantage members of a group by direct sorting according to a 
class variable: e.g. “whites only” water fountains or ‘Irish need 
not apply’ employment ads. Such paradigm cases invite a narrow 
conception, on which a decision involves disparate treatment if 
and only if: (i) the decision-maker intends to disadvantage 
members of a particular class, and (ii) does so by explicitly 
making his decisions partly on the basis of each subject’s 
membership of that class. But two broader sets of cases also 
appear to involve disparate treatment. 

First, some decisions appear to involve disparate treatment 
even when they are not intended to disadvantage members of a 
particular class. For instance, a steel mill that prohibited women 
from working in the forge, out of a paternalistic concern to 
benefit the “fairer sex” by protecting them from workplace injury, 
appears to have engaged in disparate treatment. In such cases, the 
key ingredient appears to be that decisions are explicitly made on 
the basis of class membership, regardless of what motivates that 
usage. Second, some decisions appear to involve disparate 
treatment even if they do not involve explicit consideration of 
each subjects’ membership of a class. If the foreman at the steel 
mill instituted a height requirement for employment, because of a 
desire to exclude as many women as possible from his shop floor, 
then he appears to have engaged in disparate treatment, regardless 
of the fact that he does not refer to gender in his employment 
decisions. And in such a case, the key ingredient appears to be the 
mere intention to disadvantage women, however it is realized. 

Consideration of these non-paradigmatic cases makes clear that 
disparate treatment involves procedural bias. All of these cases 
involve an association between class variables and the 
decision/score. But whether disparate treatment should be 
associated with a narrow or wide conception of procedural bias 
requires us to consider why disparate treatment is wrongful. 

3.1.1 The Wrongfulness of Disparate Treatment 
Judgments about the moral valence of disparate treatment can be 
grounded in either deontic, motivational or consequentialist 
considerations. Deontic accounts take unequal treatment to be 
wrong because it involves treatment based upon morally 
illegitimate reasons. So, for instance, the judge who denies bail to 
a black defendant because she is black, even without an intention 
to disadvantage her, wrongs the defendant because her race is not 
an appropriate reason for distributing a benefit or a burden. 
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Precisely why such reasons are illegitimate is contested. On a 
popular (though probably mistaken [7]) view, such reasons are 
illegitimate because they involve treatment according to features 
that are outside of the subject’s control [18]. On another view, it 
is illegitimate because (ex hypothesi) race does not cause the 
defendant’s conduct, and thus treats the defendant arbitrarily and 
without regard to their merit [19]. On a third view, it is 
illegitimate because the beliefs which control the decision 
demean people of color: to act on such beliefs is to express them, 
and to express them is to express the view that people of color are 
less worthy of just treatment [17,32]. The common refrain 
amongst these views is that there is something wrong per se about 
class variables directly causing score. Thus, on this account, 
disparate treatment is identified with the most restrictive 
definition of procedural bias – i.e. those instances where there is a 
direct edge between class and score (Fig. 2a). One such measure 
is “conditional statistical parity” [11], which tests for an 
association between score and class conditional on the set of 
“legitimate” model variables. But the utility of this test is limited, 
since a failure of conditional statistical parity either indicates that 
(i) there is a direct edge between class and score, or (ii) that there 
is some unknown model variable that is associated with class. 
And in the absence of full disclosure of model variables by the 
developers/users, we cannot infer which of these is the case. 

Motivational accounts ground the wrongness of disparate 
treatment in their connection to an intention to harm or 
disadvantage the relevant group. By intending to harm the 
members of a class, the decision-maker reveals themselves to be 
motivated by animus or ill-will towards that class, in ways which 
are inconsistent with respecting the personhood of the 
disadvantaged group [25,29]. And there appear to be multiple 
ways of realizing such an intention. The history of discrimination 
shows that the same discriminatory purpose can be achieved by 
the use of closely correlated proxies for class variables (e.g. zip 
code, high school graduation rates). Sometimes such proxies will 
be caused by the sensitive class variable (i.e. if being a woman is 
a cause of being sexually assaulted, then allowing a history of 
sexual assault to be a model variable can further intentional 
discriminatory treatment against women). But proxies are often 
simply close covariates (i.e. zip code, literacy), chosen without 
regard to their complex causal relationship to class. In this 
respect, intentional discrimination can be accomplished by 
selecting model variables which generate any open path between 
class and score (i.e. any of Fig 2a-d). Identifying possible cases of 
intentional disparate treatment thus require taking a maximally 
expansive definition of procedural bias. If there is any association 
between class and score, and this association is explained by the 
decision-makers intent to disadvantage a group, then the decision 
is an instance of disparate treatment discrimination. 

However, in the context of algorithmic decision-making, 
motivational accounts of disparate treatment face two problems. 
First, as Binns [6] notes, algorithms do not possess the attitudes 
of animus, ill-will or intentionality required for direct sorting by 
class variables to be wrong. While the developers and users of an 
algorithm can possess those kinds of attitudes, the mere fact that 

they deploy an algorithm which sorts by class does not establish 
that they intended that treatment to disadvantage one group. 
Second, a measure of procedure bias provides only prima facie 
evidence for disparate treatment, one must also provide evidence 
of the users’ motivation. And in so far as algorithms remove 
much of the decision-making apparatus from the hands of users, 
they are likely to obscure the kinds of evidence that courts take as 
establishing intention to discriminate [4]. 

Consequentialist accounts takes unequal treatment to be wrong 
because of the downstream effect on the distribution of outcomes 
[2,24]. In the following section we will explore some reasons one 
might take an unequal distribution of outcomes across class 
variables to be of concern. But regardless of the moral grounds, if 
this is the concern, then class needn’t cause score at all. Once 
again. it is enough that there is simply an association between 
class and score. Moreover, if we care about disparate treatment 
because of the resulting outcomes, then disparate treatment ought 
to be captured by measures of outcome bias, rather than measures 
of procedural bias. 

These foregoing considerations illustrate three important things 
about our choice of measures of disparate treatment. First, if one 
is motivated by deontic accounts of the wrongfulness of disparate 
treatment, then one ought to endorse a very restrictive measure of 
procedural bias. And current measures of procedural bias, such as 
“statistical parity” are too broad [11]. Instead, only measures of 
procedural bias that demonstrate a direct path between C and S, 
mediated if at all only by model variables should be deployed in 
investigations of disparate treatment.  When C is known to be 
exogenous, such a path is demonstrated by an association 
between S and C that is absent when one conditions on the set of 
all model variables. 

Second, if one is attracted to motivational accounts of the 
wrongfulness of disparate treatment, then no measure of 
procedural bias is sufficient to identify cases of disparate 
treatment. While measures of wide-scope procedural bias – such 
as “statistical parity” – may identify candidates for investigation, 
the crucial ingredient is the intentions and motivations of the 
decision-maker. 

Third, in so far as we care about disparate treatment because of 
the resulting outcomes, then we ought to care not about 
procedural bias (i.e. the relation S⫫C), but about outcome bias 

(i.e. the relation O⫫C). 

3.2 Disparate Impact and Outcome Bias 
Disparate impact discrimination involves unintentional 
disadvantaging of members of a group by virtue of a prima facie 
neutral policy or practice. Under U.S. law, it has three elements: 
(i) a practice causes a disproportionate share of adversity to fall 
on members of a class, and either (ii) the practice is not necessary 
to meet the legitimate goals of the decision-maker, or (iii) there is 
an alternative practice which will result in a less disproportionate 
distribution of adversity [4]. The first element is measured by 
unconditional outcome bias – i.e. if there exists any (significant) 
association between O and C. But the second and third tests 
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require a more nuanced investigation. In particular, they require 
us to know something about why disparate impact is unjust. 

Judgments about the moral valence of disparate impact can be 
grounded in either distributional, expressive or desert-based 
considerations. In the distributional case, we care about disparate 
impact if and only if it creates or exacerbates unjust patterns in 
the distribution of goods. So, for instance, a welfare egalitarian 
might regard a practice which disproportionately harms one group 
wrongful if it increases overall inequality. For a prioritarian, a 
practice is wrongful if it makes the least-advantaged group worse 
off than they would have otherwise been. In the expressive case, 
we care about disparate impact simply because it results in visible 
disparities between classes that undermine their equal status as 
citizens [1,28]. This view appeals to an “anti-caste” principle: that 
we ought not design social systems such that highly visible 
distinctions between classes are associated with deprivation [34]. 
The concern is disparities based upon easily recognizable 
characteristics (race, gender, age, disability, etc), come to be seen 
as natural hierarchies. In such circumstances, the social bases for 
treating one another as political and moral equals is likely to 
erode. 

Importantly, according to distributional and expressive 
considerations, disparate impact is wrongful when it creates or 
exacerbates “wide-scope” disadvantages [25]– i.e. if already 
disadvantaged groups are made worse off by the specific disparity 
generated by the algorithm. Disparities that are minor, or where 
the adversity is disproportionately borne by otherwise well-off 
groups, matter much less (if at all) on these accounts. Moreover, 
these distributional and expressive goals are threatened by 
disparate impact regardless of whether the algorithm assists the 
decision-maker in meeting their legitimate goal. That an 
algorithm is more predictively accurate, for instance, does not 
lessen the distributional or expressive impact of the disparities 
that it generates. The bare disparities in outcome are what matter. 
In this respect, these considerations may best be captured by an 
analysis of outcome bias that is sensitive to whether the adversity 
falls on an already disadvantaged class. 

Finally, in the desert-based case, we care about disparate 
impact because it exacerbates failures to give individuals what 
they deserve [31]. For instance, where a prima facie neutral 
practice disproportionately deprives a group who share an 
unchosen class variable (e.g. sex, race, etc.), it appears that the 
practice penalizes individuals for the “bad luck” of being born 
with particular characteristics that are (ex hypothesi) irrelevant to 
the target behavior. Here, simple consideration of outcome bias is 
insufficient, and we must instead consider whether the outcome 
bias is fully explained by reference to the algorithms’ predictive 
accuracy, or whether it is an invidious artifact. Indeed, measures 
of error bias – such as balance and calibration – are prima facie 
attractive, precisely because they appear to ask whether similarly 
risky people are treated equivalently, regardless of class.  

3.3 Equal Concern and Error Bias 
Condition-relative measures of error bias can, as we noted above, 
be normatively motivated either by an interest in constraining the 

difference in error rates between classes, or by appeal to 
maximizing predictive accuracy without reference to the sensitive 
attributes.  We think on either motivation, such measures turn out 
to be objectionable.   

Behavior-relative measures are initially motivated by the idea 
that when scores wrongly predict a subject’s behavior, generating 
either false positive predictions that a behavior will occur, or false 
negative predictions that a behavior will not occur, subjects are 
wrongly harmed on the basis of their class membership. One 
explanation of this wrong is that such treatment fails to give the 
members of the class “equal concern” relative to members of 
other groups [13:370].  Equal concern, so the thought goes, 
requires that the same amount of effort is made to accurately 
classify members of different classes. One interpretation of this is 
simply that we should minimize predictive error for each class, 
without reference to the difference in error rates between classes. 
But then measures of error bias are irrelevant: what matters is 
overall accuracy. The second interpretation of equal concern is 
that it requires equality of predictive error across classes. This is 
captured by measures of error bias, but two problems loom. 

First, reducing error bias will often require “levelling down” 
predictive accuracy in one class, in order to equalize with the 
lower predictive accuracy of the other class. This involves 
making some individuals in the better predicted class worse off 
(by failing to predict their behavior as accurately as we could 
have), in order to satisfy an abstract principle of equality between 
classes. While it is possible to endorse such a tradeoff, it is 
notable that no individual of a maligned class benefits per se from 
equality of predictive error (unlike equality of outcome, which 
has distributional or representational benefits). 

Second, it is simply impossible to avoid bias, so understood, 
when class causes behavior. And as the evidence surrounding 
racialized policing and workplace harassment suggest, we have 
good reason to suppose that class often causes behavior (e.g. re-
arrest, poor performance) precisely because of racial and gender-
based injustice. While constructing a society where class no 
longer influences behavior is a worthwhile goal, this does not 
imply that we should judge algorithmic decision-making as if that 
goal has already been met.  In particular, given that it will be 
generally impossible to secure homogeneous distributions of 
error, aiming to avoid these forms of bias may involve reducing 
the predictive accuracy of algorithms in ways that sabotage 
efforts to compensate for existing injustices [10]. We do not see 
why one should prefer algorithms that generate scores less well 
predicted by class to algorithms that generates scores better 
predicted by class, (except in the sense that such algorithms 
exhibit procedural bias, at least in its wide sense). 

Score-relative measures are in much the same boat. Grant that 
an algorithm generating ill-calibrated scores gives persons less 
than they deserve, in that the algorithm predicts for some less 
well than it might have done. In so far as we suppose that 
sensitive attributes are (or should be) irrelevant to our behavior, 
we might therefore assume that algorithms should be maximally 
predictively accurate without referring to an individual’s class 
(i.e. the model should be ‘sufficient’ for prediction).  Thus, it is at 
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least initially plausible that we should aim to construct algorithms 
which render behavior and class independent conditional on 
score.  But again, that aim can only be notional, because in the 
case that C causes B (i.e. for almost all cases of interest) the aim 
is unachievable.  Worse, in that case, better predictions of B 
require that S track C, else C’s influence will appear as noise, i.e. 
error, with respect to the algorithm’s predictions.  But if S is to 
track C, it must do so by way of an association induced by an 
unconditionally open path between C and S, which path will not 
be blocked by conditioning on behavior.  That is, given that 
sensitive attributes are often (unjustly) relevant to behavior, 
maximizing predictive accuracy for each class will often require 
algorithms to include, not exclude, class as a model variable.  

Both behavior-relative and score-relative measures can, at least 
prima facie, be motivated as measures of procedural bias, since 
measures of both kinds will report the presence of bias when C 
and S are causally connected directly, indirectly, or by way of a 
common cause.  But so understood, measures of both kinds are 
seriously unreliable, because they will also report bias when class 
causes behavior, whether or not class and score are otherwise 
causally connected.  Hence, we think condition-relative measures 
of bias ought be dispensed with, tout court. 

This is not to say that minimizing error is itself not a legitimate 
aim.  It is surely a wrong to mis-predict the behavior of subjects 
when that behavior could have been predicted by the use of a 
more accurate algorithm.  And equally, less accurate predictions 
impose a cost in efficiency, thus decreasing overall social utility.  
But, we suggest, absent special considerations, such error is best 
assessed by measures which are not condition-relative.  Given the 
inadequacies of condition-relative measures of error bias, we 
suggest that proper scoring rules used to judge predictive 
accuracy, e.g. the Brier score [8], might provide better alternative 
measures of error bias (c.f. Lipton [26] among other discussions 
employing accuracy based measures of error bias).  

Though minimizing error is an important desideratum, it is not, 
or at least not always, of overriding moral importance, but rather 
only one consideration among several relevant to a moral 
assessment of any decision procedure.  It is therefore worth 
noting, with some emphasis, that when class causes behavior, it is 
simply not possible to avoid procedural bias while minimizing 
error, and indeed, the most efficient method for minimizing error 
- i.e. where class is a model variable directly influencing score - 
involves paradigmatic disparate treatment.  Procedural bias and 
error bias cannot, therefore, be jointly minimized when class 
causes behavior, and that unfortunate fact cannot be avoided by 
any statistical measure of bias, no matter how cleverly devised. 

4. CONCLUSION 
We have examined a number of the causal structures in which 
class, model, behavior, score and target behaviors may be 
embedded.  Those structures imply a set of conditional and 
unconditional associations which have a number of implications. 
In particular, procedural bias, e.g. disparate treatment, turns out to 
be a special case of outcome bias.  Further, when class variables 
cause target behaviors (and so the behavior is differentially 

distributed across classes), procedural and condition-relative error 
bias cannot be jointly avoided.  Indeed, under those 
circumstances, behavior-relative and score-relative bias cannot be 
jointly avoided.  Moreover, condition-relative measures of error 
bias cannot be given a clear normative motivation that is 
distinctly different from that warranting attention to procedural 
and outcome bias (e.g. disparate treatment and disparate impact), 
but are unreliable indicators of such bias.  We suggest therefore 
that alternative, non-condition-relative, measures of error bias 
should be considered in their place, recognizing that minimizing 
error bias and minimizing procedural and outcome bias will 
necessarily be competing desiderata when class causes behavior. 
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